446 research outputs found

    Quantum Machine Learning Applied to Chemical Reaction Space

    Get PDF
    The scope of this thesis is the application of quantum machine learning (QML) methods to problems in quantum chemistry and chemical compound space, especially chemical reactions. First, QML models were introduced to improve job scheduling of quantum chemistry tasks on small university and large super computing clusters. Using QML based wall time predictions to optimally distribute the workload on a cluster resulted in a significant reduction of the time to solution by up to 90% depending on the type of calculation studied: Ranging from single point calculations, over geometry optimizations, to transition state searches on a variety of levels of theory and basis sets. The main focus of this thesis remains with the navigation through the chemical reaction space using QML models. To train and test these models large, consistent, and carefully evaluated data sets are required. While extensive data sets with experimental results are available, consistent quantum chemical data sets, especially for reactions, are rare in literature. Thus, a dataset for two competing text book reactions E2 and SN2 was generated, reporting thousands of reactant complexes and transition states with different nucleophiles (-Hβˆ’^{-},-Fβˆ’^{-}, -Clβˆ’^{-}, -Brβˆ’^{-}), leaving groups (-F, -Cl, -Br), and functional groups (-H, -NO2_2, -CN, -CH3_3, -NH2_2) on an ethane scaffold. The geometries were obtained on the MP2/6-311G(d) level of theory with subsequent DF-LCCSD/cc-pVTZ single point calculation. However, limited by computational resources, the data set was incomplete. Therefore, reactant to barrier (R2B) machine learning models were introduced to support the data generation and complete the dateset by predicting ~11'000 activation barriers solely using the reactant geometry as input. Using R2B predictions, design rules for chemical reaction channels were derived by constructing decision trees. Furthermore, Hammond's postulate was investigated, showing the limits for its application on reactants far away from the transition state, e.g. conformers. Finally, the geometry relaxation and transition state search solely using machine learned energies and forces was investigated. Trained on 200 reactions, the QML model was able to find 300 transition states, reaching out of sample RMSD of 0.14Γ… and 0.4Γ… for reactant geometries and transition states, respectively. Although, relatively large RMSD for the geometries remain, the out of sample MAE of 26.06cmβˆ’1\mathrm{cm^{-1}} for the transition state frequencies show a well described curvature of the transition state normal modes in agreement with the MP2 reference

    ВлияниС энСргии ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½ΠΎΠΉ струи Π½Π° ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ плазмодинамичСского синтСза Π² систСмС SI-C

    Get PDF
    Synthesis of silicon carbide is interested due to the presence of a wide range of his unique mechanical, thermal and electrical properties: superhardness, strength, thermal and corrosion resistance, radiation hardness, unique semiconductor characteristics. There is a great number of nano-SiC synthesis techniques, but the unique mentioned properties of the produced SiC cannot be generally realized due to dependence on the synthesis methods. In this connection the development of new simple and productive methods for the direct synthesis of nanodispersed high-quality silicon carbide is an important problem. The paper presents the results of the plasmodynamic synthesis and the ability to control the synthesis process and to change product characteristics by the plasma jet energy. The above method can be realized in a high-speed pulse jet of the dense Si-C. The jet is generated by a pulse (~100 ?s) high-current (~100 A) coaxial magnetoplasma accelerator with graphite electrodes. The synthesized product was analyzed by some modern techniques as X-ray diffraction. The main result of the paper is a demonstration of the capabilities plasmodynamic synthesis of nanosized cubic silicon carbide. Change of the input energy level can influence on phase composition, crystals growth and particle sizes

    Π‘ΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ провСдСния Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ Π°ΡƒΠ΄ΠΈΡ‚Π° Π² ВПУ (Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… рСсурсов)

    Get PDF
    Показано, Ρ‡Ρ‚ΠΎ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΉ Π°ΡƒΠ΄ΠΈΡ‚ являСтся эффСктивной Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎ ΠΏΡ€Π΅Π΄ΠΎΡΡ‚Π°Π²Π»Π΅Π½ΠΈΡŽ нСзависимых ΠΈ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Π³Π°Ρ€Π°Π½Ρ‚ΠΈΠΉ, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Ρ… Π½Π° ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠ΅ функционирования института с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π½ΠΎΠ²Ρ‹Ρ… ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ. УстановлСно, Ρ‡Ρ‚ΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ мСроприятия ΠΏΠΎ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡŽ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ провСдСния Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ Π°ΡƒΠ΄ΠΈΡ‚Π° Π² Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚Π΅ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… рСсурсов позволят ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ соотвСтствиС Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Π² области качСства Π·Π°ΠΏΠ»Π°Π½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ мСроприятиям, трСбованиям ИБО 9001:2008

    ГСохимичСская Π·ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ скарново-Π·ΠΎΠ»ΠΎΡ‚ΠΎΡ€ΡƒΠ΄Π½Ρ‹Ρ… мСстороТдСний Π—Π°ΠΏΠ°Π΄Π½ΠΎΠΉ Π‘ΠΈΠ±ΠΈΡ€ΠΈ

    Get PDF
    ИсслСдована гСохимичСская Π·ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π·ΠΎΠ»ΠΎΡ‚ΠΎ-скарновых мСстороТдСний Π—Π°ΠΏΠ°Π΄Π½ΠΎΠΉ Π‘ΠΈΠ±ΠΈΡ€ΠΈ. ВыявлСно концСнтричСски зональноС строСниС Π°Π½ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… структур гСохимичСских ΠΏΠΎΠ»Π΅ΠΉ, ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‰ΠΈΡ… ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ мСстороТдСния. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ…ΡΡ ΠΈ Π΄Π΅ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ…ΡΡ (ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π·ΠΎΠ»ΠΎΡ‚ΠΎΡ€ΡƒΠ΄Π½Ρ‹ΠΌ Ρ‚Π΅Π»Π°ΠΌ) элСмСнтов. УстановлСна тСсная пространствСнная связь Π·ΠΎΠ»ΠΎΡ‚Π° с комплСксом Ρ…Π°Π»ΡŒΠΊΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… элСмСнтов-спутников, Π½Π°Π±ΠΎΡ€ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠ·ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π² Ρ…ΠΎΠ΄Π΅ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ Π³ΠΈΠ΄Ρ€ΠΎΡ‚Π΅Ρ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ систСмы. Набор Π΄Π΅ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ…ΡΡ элСмСнтов, Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΠΎ ΠΏΠ΅Ρ€ΠΈΡ„Π΅Ρ€ΠΈΠΈ Ρ€ΡƒΠ΄Π½Ρ‹Ρ… Ρ‚Π΅Π», Π² Ρ†Π΅Π»ΠΎΠΌ стандартный ΠΈ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Π² сСбя Ni, Co, Cr, V, Ba, Mn. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ обсуТдСниС гСнСтичСских аспСктов выявлСнной гСохимичСской Π·ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ

    ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ формирования ΠΌΠ΅Ρ€Ρ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π°Ρ€ΠΈΡ‚ΠΌΠΈΠΈ сСрдца Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°

    Get PDF
    This paper deals with the modeling of the electrical system of the human cardiac tissue. The paper’s aim is creation of the model, which geometrical structure is closed to the actual geometry of the human heart. The processes occurring in the heart muscle are modeled by solving a system of nonlinear differential equations in COMSOL Multiphysics
    • …
    corecore